RocPy Rochester Data Science Meetup Group

Neural Networks Demystified

April 10th, 2025

Evan Raw

Table of Contents

Intro to Neural Networks

Derivatives

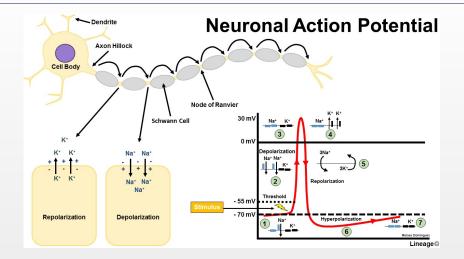
Integrals

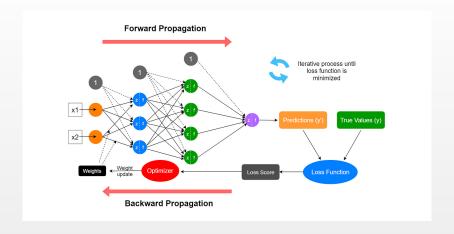
Backpropogation

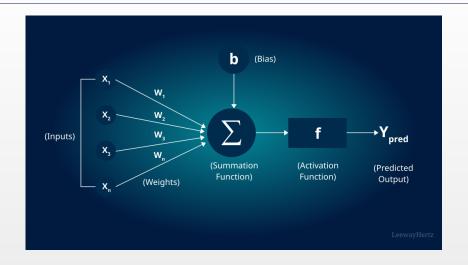
Gradient Descent

Statistical Distributions

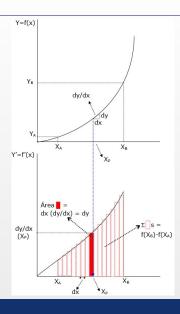
Going Further

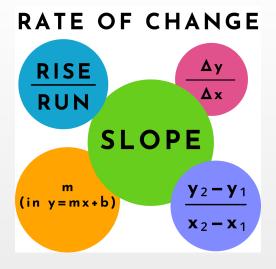

Get the Slides


Biological Inspiration


Neuron

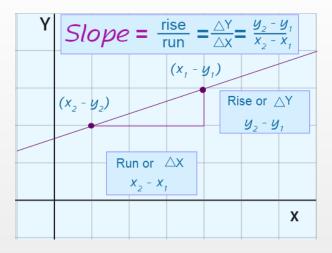
Neural Network


Perceptron Diagram


Perceptron

$$y = \sigma\left(\sum_{i=1}^n w_i x_i + b\right)$$

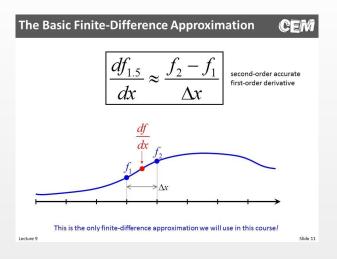
Calculus


Derivatives

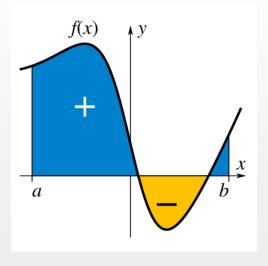
Derivatives Are Ubiquitous

- How fast is your internet? (bits / second)
- How fast is your car going? (distance / time)
- How much are you paid per hour/year? (currency / time)
- More or less anytime a measurement is represented as (thing1 / thing2)

Slope Formula


Derivative Definition

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

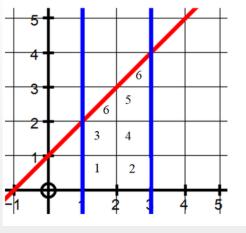

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x \to a}$$

Calcworkshop.com

Finite Differences Derivative

Integrals

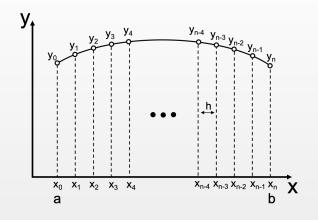
Integrals Are Ubiquitous

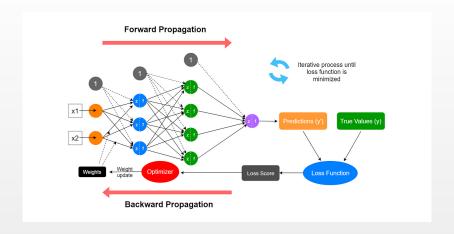

Any analog (non-discrete) sum of values is an integral

- Area (for square, width * height)
- Volume (cup, gallon, liter)
- How fast is your car going? (distance / time)
- How much are you paid per hour/year? (currency / time)
- More or less anytime a non-discrete measurement is represented as (thing1 / thing2)

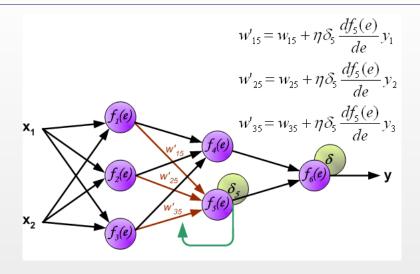
Area/Volume Calculations

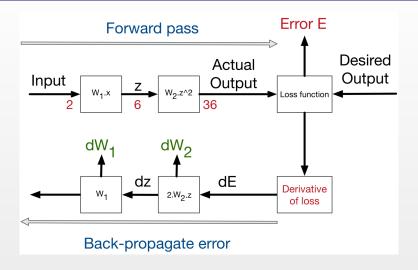
SKILLS NEED Area, Surface Area & Volume reference sheet				
Two-dimensional plane shapes	Area The measure of how many squares will fit into a shope. Units ²	Three-dimensional solid shapes	Surface Area The measure of the area of all outward facing sides. Units ²	Volume The measure of how many cubes will fit into a shape. Units³
Square	Area = a^2 or $a \times a$ Example: a = 5cm Area = $5^2 = 25cm^2$	Cube	Surface Area = $6 \times a^2$ Example: a = 5cm Surface Area = $150cm^2$	Volume = a ¹ or a × a × a Example: a = 5cm. Volume = 125cm ¹
Rectangle $^{\mu}$	Area = w × h Example: w = width=10cm height=20cm Area=10 × 20 = 200cm²	E la ba	Surface Area = 2 × ba + la Example: ba = base area = 20cm² la = lateral area (all sides) = 60cm² Surface area = 2 × 20 + 60 = 100cm²	Volume = ba × h Example: ba = base area = 20cm² h = beight = 5cm Volume = 20 × 5 = 100cm²
Triangle h	Area = $b \times h \times 0.5$ Example: b = base = 20cm h = vertical height = 15cm Area = $20 \times 15 \times 0.5 = 150cm^2$	Pyramid	Surface Area = ba + la Example: ba = base area = 16cm² la = lateral area (all sides) = 60cm² Surface area = 16 + 60 = 76cm²	Volume = ba × h × 1/3 Example: ba = base area = 16cm² h = height = 9cm Volume = 16 × 9 × 1/3 = 48cm²
Reg Polygon	Area = n × s × a × 0.5 Example: n = number of sides = 6 length of side=5cm a = apothem=15cm Area = 6 × 5 × 15 × 0.5 = 225cm ²	R. Polyhedron	Surface Area = fa × s Example: fa = area of one side = 200cm ² s = number of sides = 12 Surface area = 200 × 12 = 2400cm ²	Example: There is no simple generic formula for working out the volume of a regular polyhedron.
Cirde	Area = $\pi \times r^2$ Example: $\pi = pi = 3.14$ r = radius = 5 cm Area = $3.14 \times 5^2 = 3.14 \times 5 \times 5 = 78.5 cm^2$	Sphere	Surface Area = 4 × π × r ² Example: r = radius = 4.5cm Surface area = 4 × 3.14 × 20.25 = 254.5 cm ² (Approx)	Volume = $4/3 \times \pi \times r^3$ Example: r = radius = 4.5cm Volume = $4/3 \times 3.14 \times 4.5^3$ = $381.5cm^3$ (Approx)
Ellipse	$Area = \pi \times a \times b$ Example: $\pi = pi = 3.14$ $a = radius of long axis = 6$ $b = radius short axis = 4$ $Area = 3.14 \times 6 \times 4 \times 5 = 75.36cm^{2}$	Cylinder	Surface Area = 2πrh + 2πr² Example:	Volume = $\pi \times r^2 \times h$ Example: r = radius = 5cm h = height = 10cm Volume = $3.14 \times 25 \times 10$ = $785cm^3 (Approx)$
© 2020 Skills/You/Need.com				

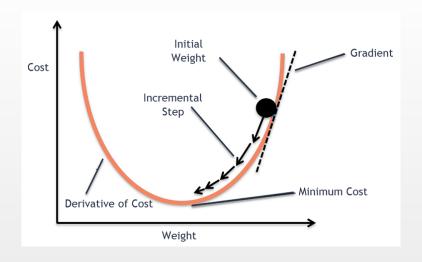

Integral Approximation

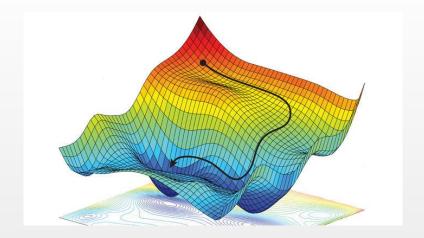

Area = 6 squares

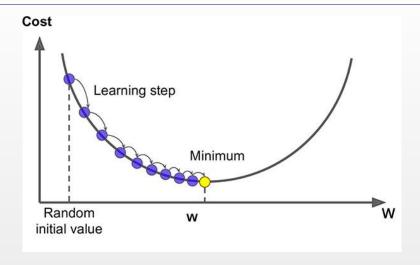
Just count them!

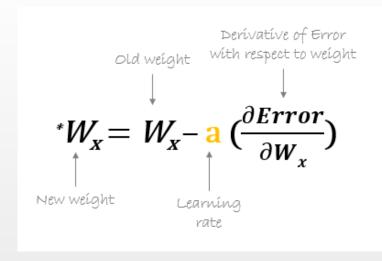

Finite Differences Integral

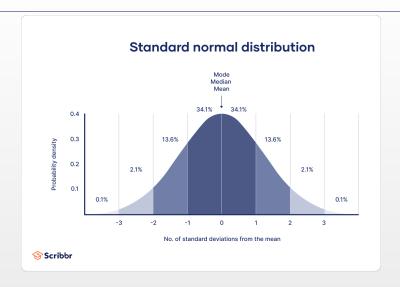

Neural Network

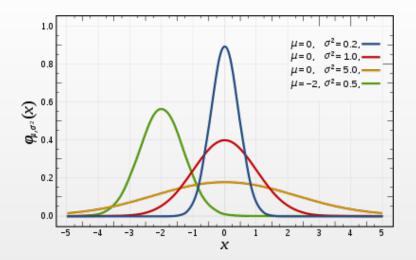

Backpropogation


Backpropogating Error


Gradient Descent


Gradient Descent 2D


Gradient Descent in Neural Networks


Gradient Formula for Updating Weights

Normal Distribution

Examples of Normal Distributions

Activation Functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

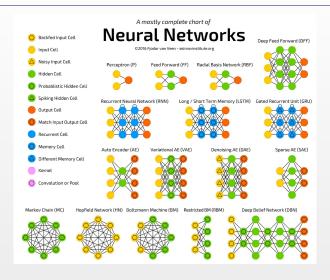
ReLU

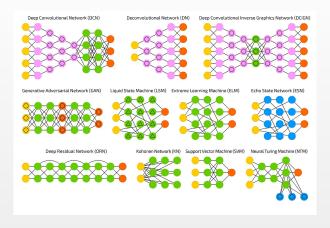
 $\max(0,x)$

Leaky ReLU $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$


$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$


Optimizers

- SGD
- Adam
- RMSProp
- AdaGrad
- AdamW

Types of Neural Network 1

Types of Neural Network 2

